Characteristics and Preparation of PVDF Catalytic Membrane Modified by Nano - TiO 2 / Fe 3 +

نویسندگان

  • Li Li
  • Tian Ye
چکیده

The polyvinylidene fluoride (PVDF)/Fe 3+ -TiO2 catalytic membrane was prepared by sol-gel method. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectrum (FT-IR), mechanics capability, water flux, pepsin retention, porosity and contact angle etc. The catalytic activity of PVDF/Fe 3+ -TiO2 catalytic membrane was evaluated by the degradation of refractory dye Orange IV in the presence of H2O2. The results show that the addition of appropriate nano-sized TiO2 sol in the preparation of PVDF membrane has greatly improved some properties of the membrane such as microstructure, hydrophilic ability, mechanics intensity and water flux etc. The addition of Fe 3+ ion in the preparation of PVDF membrane has greatly improved its catalytic activity to decompose H2O2. The catalytic activity of PVDF/Fe 3+ -TiO2 is increased with the increase of the content of Fe 3+ ion. When the content of Fe 3+ _TiO2 sol is 21%, the content of Fe 3+ ion is from 0.02% to 0.12%, the discolorization rate of Orange IV in this Fenton-like oxidation is from 61.2% to 90.5%. The catalytic activity of PVDF/Fe 3+ -TiO2 is not changed with the increase of the content of nano-sized TiO2. This kind of PVDF/Fe 3+ -TiO2catalytic membrane has not only good filtration efficiency but also good catalytic activity to effectively decompose H2O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

Fabrication and Charge Modification of Ceramic Membranes Using Copper Nanoparticles for Desalination

Ceramic membranes are considered as alternatives for their polymeric counterparts due to highmechanical strength and thermal resistance; thus long lifetime. Usually, asymmetric ceramicmembranes are synthesized including several layers with different pore size distributionswith the top-layer playing the main separation role. Titania has several properties such asphotocatalytic activity and chemi...

متن کامل

Fabrication and Characterization of Visible Light active Fe-TiO2 Nanocomposites as Nanophotocatalyst

   In this research Fe-TiO2 nanocomposites with different molar ratios of Fe/Ti were prepared as nano-photocatalyst using a modified Sol-Gel process at ambient temperature. Crystallographic properties of nanocomposites were characterized by X-ray Diffraction (XRD). Surface morphology and mean particle size of nanocomposites were specified by Field Emission Scann...

متن کامل

Preparation and Characterization of Microfiltration Membrane Embedded with Silver Nano-Particles

The microfiltration 0.2 µm Cellulose Acetate (CA) membrane was modified by embedding antibacterial silver nano-particles in the membrane pores. This novel technique was developed to enhance the capability of the microfiltration membrane for removing microorganism including bacteria. The prepared membrane was characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013